Zooming out and scaling
up: from 1 to 1000 cores

Steven P. Levitan
University of Pittsburgh
Thanks to Donald Chiarulli

MPSOC 08

=) How we got (back) here

Two technology drivers to
renewed interest in parallel
processing:

B Heat problems (hot chips)

Power: cooling vs. melting

Slower ClOCkS | http://www.devilsfoot.com/Power/Pics/blv910die.jpg
More instructions per clock '
More instruction interpreters

B Nano (bio?) technology
Billions and billions of devices
None of them working very well

| http:/iwww.fz-juelich.de/ibn/datapool/page/397/CellOnTransistor.jpg | Steven Levitan June-2008 2

=) How fast can we go?

B Amdahl 1967: speedup factor for =~ Gustafson 1988: scale the problem

a fixed size problem size
B F = Fraction of “non-parallel B C = Constant amount of serial
code” code

B N = number of processors

B P = problem size
B N = number of processors

Speedup Factor

= e
o o N

o N O

Amdahl's Law Gustafson/Finnigan Law P
F 50 1
=2
——0.1 S 40
e & N
-—=—-0.25 I
/ T 30 8
/ 05 s / %16
- - 0.75 2 20
(] ——
— |09 2 10 A 32
H—HF—H—H——F——K—KF—X n . =X 7 7 —+— 64
T T T T T T T T T 0 s e i e e 128
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
256
Number of Processors Number of Processors 512

Speedup =1/ (F + (1-F)/N) Speedup = (C+P) / (C+(P/N))

Steven Levitan June-2008 3

The VLSI approach to computational

=¥ complexity! —J. Finnegan

“The rapid advance of VLSI and the trend towards
the decrease of the geometrical feature size, through
the submicron and the subnano and... beyond ...
[implies that] traditionally unsolvable][aroblems can
now be easily implemented using VLSI technology.”

“...in the 70s ... scientists discovered... [that]
problems with [high] time complexity can be solved
in [little] time... using a number of processors which
is a function of the problem size...”

“...the cost of VLSI processors decreases
exponentially. ... Hence, the application of an
exponential number of processors does not cause any
cost increase...”

ID. Cohen in “CMU Conference on VLSI Systems and Computations,” Kung, Sproul, Steele
ed. Computer Science Press, Rockville, MD., pp. 124-125 1981

Steven Levitan June-2008 4

=5) What works?

B Few Cores
Task based

Seutaves Ry

B A Bunch
Multi-threading

B Many (Streams)
Data Decomposition

Problem Partitioning
| >

m A lot
New Paradigms

Steven Levitan June-2008 5

N Beyond Flynn’s Streams: a continuum
= Of architecture models

Streams of instructions,
operations, data, sequencing
B Dataflow

Directly compute the graph
(forest)

No program counter
m VLIW

Several different instructions
at once

m MIMD
autonomous behaviors
m SIMD
same program in lockstep

data dependent branching
done by bifurcating execution

B Cellular Automata — same
program — but not broadcast

Steven Levitan June-2008 6

&) Classic parallel paradigms

Q: How to write parallel programs?
A: Decompose the problem by:

B Space
Map data representation of problem to processors
3D or could be problem space, solution space
B Time
Pipelining partial results
B Function
Task assignments to processors
B Instance
Multiple instances of problem on processors

Steven Levitan June-2008 7

= What did we learn from VLSI era
=¥ parallel processing?

B Hardware is the easy part
Broadcasting, streaming, synchronizing, counting, etc.
Memory — you need more than you think
Serial process (remember Amdahl's Law)
I/O bottlenecks can kill performance
Scaling problem for global communication
grzg)to end delays grow as the mesh size scales up,
B Software is the hard part

We are taught to think in a linear sequence
Not just for writing programs

Discovering Earallelism after the creation of the
algorithm is hard for both humans and machines

Steven Levitan June-2008 8

Higher level metaphors for
computation

B Interpretation — reacting to commands
Layers-abstractions 3D Life
Control systems, operating systems

B Transformation — translating

representations

Data analysis
Communication

B Simulation — modeling systems
Physical systems
Artificial systems
Social Systems

B Optimization — exploring state-spaces
Representations
Processes

B Are these are the right ones, are there
more?...

| http://www.geocities.com/robisais/3dca.html |

Steven Levitan June-2008 9

Interpretation

B Examples:
operating system
robotic control
human interaction
stock market
airline reservations
B Design Issues:
How many command streams?
Do we have limited resources
scheduling
Shared or independent state spaces?
Synchronization
Response time

Steven Levitan June-2008 10

(=}) Transformation

B Examples
Compilers o 0
Image/signal processing II

B Design Issues

Is the input context free/sensitive?
Manage global state

Is the change incremental?
Does the size of the representation change?
Throughput

Steven Levitan June-2008 11

=5) Simulation

B Examples
Discrete time systems
Economic, social systems
B Design Issues

Time management
scheduling

Number of actors

Interaction network

Evaluation complexity

Steven Levitan June-2008 12

(=) Optimization

B Examples
Branch & bound updater / updater
Genetic algorithms
Relaxation

B Design Issues updater oo updater
Distributed vs. global state

Cost/optimization function

Steven Levitan June-2008 13

Rather than try to “parallelize code”

B Concurrency should be intrinsic to the -
representation of the problem “

B Use a language that correspond
directly to the concepts in the problem

domain

B The ideal language should present ﬂ =
both /é j

“rats eye view” - neighborhood v cartoonstock com

“birds eye view” — overall behavior

Think Globally, Act Locally

Steven Levitan June-2008 14

